因此,∣PA∣?∣PB∣=∣PA∣2=(x3?xP)2(1+kl2)|PA| \cdot |PB| = |PA|^2 = (x_3-x_P)^2 (1+k_l^2)∣PA∣?∣PB∣=∣PA∣2=(x3?xP)2(1+kl2)。
x3,x4x_3, x_4x3,x4 是方程 $6x^2 - 12x + 5 = 0的两个根。判别式的两个根。 判别式的两个根。判别式\Delta = (-12)^2 - 4 \cdot 6 \cdot 5 = 144 - 120 = 24 > 0。。 。x_{3,4} = \frac{12 \pm \sqrt{24}}{12} = 1 \pm \frac{2\sqrt{6}}{12} = 1 \pm \frac{\sqrt{6}}{6}。所以,。 所以,。所以,x_3 = 1 - \frac{\sqrt{6}}{6},,,x_4 = 1 + \frac{\sqrt{6}}{6}(或相反,不影响结果)。(或相反,不影响结果)。(或相反,不影响结果)。|x_3-x_P| = |1 - \frac{\sqrt{6}}{6} - 1| = \frac{\sqrt{6}}{6}。。 。|PA|^2 = (\frac{\sqrt{6}}{6})^2 (1+(-1)^2) = \frac{6}{36} \cdot 2 = \frac{1}{6} \cdot 2 = \frac{1}{3}。所以,。 所以,。所以,|PA| \cdot |PB| = \frac{1}{3}$。
“嗯?|PM|·|PN| = 1/3,|PA|·|PB| = 1/3?”
秦风看着草稿纸上的结果,眼中闪过一丝明悟。
“如果 |PM|·|PN| = λ |PA|·|PB| 恒成立,那么 λ = 1?”
他仔细检查了一遍自己的计算过程,每一个步骤都清晰无误。
“过目不忘”带来的不仅仅是记忆力,还有一种对细节的极致洞察力,让他很难在计算中出错。
而那7点的智力,虽然不高,但在此刻也发挥了关键作用,让他的逻辑推理能力上了一个小台阶。
【“过目不忘(体验版)”剩余时间:02分15秒。】
时间所剩无几!
秦风额头已经布满了汗珠,但他眼神却越来越亮。
他迅速整理思路,将整个解题过程清晰、完整地书写在另一张干净的草稿纸上。字迹虽然因为追求速度而略显潦草,但每一个步骤都条理清晰,逻辑严谨。
当他写下最后一个“综上所述,存在常数λ=1,使得等式恒成立”的结论时,脑海中的倒计时,正好跳到了“00分03秒”。
“呼——”
秦风长长地舒了一口气,整个人如同虚脱一般,靠在了椅背上。
几乎在同时,那种大脑如同超级计算机般高速运转、对一切信息过目不忘的奇异感觉,潮水般退去。
他的大脑恢复了往常的状态,甚至因为刚才的超负荷运转,还带着一丝轻微的疲惫和晕眩。
但他心中,却充满了前所未有的充实感和喜悦!
他做到了!
他竟然真的独立解决了一道连他自己都不敢想象的超级难题!
这种通过自身努力(虽然有系统辅助)攻克难关所带来的巨大成就感,是任何东西都无法比拟的!
学习,原来也可以这么爽!
就在这时,冰冷机械的系统提示音,如约而至:
【叮!新手任务:独立正确解答数学难题,已完成!】
【任务评价:优秀(解题思路清晰,步骤完整,用时57分57秒,符合预期)。】
【正在结算任务奖励……】
秦风的心脏不争气地加速跳动起来,眼中充满了期待。
【恭喜宿主获得奖励:10点学神积分!】
【恭喜宿主获得奖励:“初级数学思维”(碎片1/3)!】
10点学神积分!
秦风的眼睛瞬间亮了!
在之前的系统介绍中,他隐约记得,积分似乎是系统商城里的硬通货,可以用来兑换各种神奇的道具和能力!这可是实打实的好东西!
而更让他惊喜的,是那个“初级数学思维”碎片!
就在系统提示音落下的瞬间,秦风感觉到一股微弱但却异常玄妙的暖流,从自己眉心处涌入大脑。
紧接着,他脑海中关于数学的那些零散的、通过“过目不忘”强行记忆下来的知识点,仿佛被一只无形的大手轻轻拨动了一下。
许多之前只是记住但并未完全理解透彻的公式定理,此刻竟然有了一种豁然开朗的感觉!
他对刚刚解出的那道复杂函数题,也有了更深一层的感悟。
这章没有结束,请点击下一页继续阅读!
喜欢学神系统:爆肝高考全科满分请大家收藏:(www.qbxsw.com)学神系统:爆肝高考全科满分全本小说网更新速度全网最快。